
Developing Domain-Independent Search Control for Europa2

Sara Bernardini David E. Smith
Istituto per la Ricerca Scientifica e Tecnologica (IRST) NASA Ames Research Center

Via Sommarive 18, 38055 Trento, Italy Moffet Field, CA 94035–1000
bernardini@itc.it desmith@arc.nasa.gov

Abstract
In the last few years, classical planners have achieved im-
pressive results due to the development of problem relax-
ation techniques for computing distance estimates. In con-
trast, many large temporal planning systems used for practi-
cal applications have not benefitted from these techniques.
Instead, these systems rely on careful engineering of the
domain knowledge, together with carefully crafted domain-
dependent control information. In this paper, we explain
some of the characteristics of NASA’s EUROPA2 planning
system that make it difficult to directly apply the heuristic
techniques developed for classical planning. However, we
then borrow ideas from some of these techniques to develop
domain-independent heuristic techniques for EUROPA2. We
show some promising initial results concerning their effec-
tiveness.

Introduction
In the last decade, there have been significant improvements
in the performance of automated planning systems. Key
to this improvement has been the development of domain-
independent heuristic techniques for estimating the distance
between states and goals. Generally, these techniques rely
on automatically generating a relaxed formulation of the
planning problem and using a solution of this relaxed prob-
lem as a distance estimate. One popular method for doing
this is to generate a plangraph (Blum & Furst 1997), extract
a relaxed plan from it, and use the cost of this solution as the
distance estimate (Hoffmann & Nebel 2001).

In contrast, many planners used for real-world applications,
such as EUROPA (Frank & Jonsson 2003), ASPEN (Chien
et al. 2000) and IxTeT (Ghallab & Laruelle 1994), have
not benefitted significantly from these advances. Instead,
these systems rely on careful engineering of the domain to-
gether with hand-crafted domain-dependent search control
information. This process is generally quite painful, time
consuming, and can lead to models that are not very ro-
bust to small changes in the domain or in the nature of the
problems being solved. It would therefore be quite useful
and desirable to have powerful domain-independent control
techniques for these planning systems. Unfortunately, there
are difficulties involved in doing this: the representation lan-
guages for these systems are quite different, and allow much

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more complex temporal and metric constraints; the search
strategies employed by these systems cannot be character-
ized as either simple progression or regression. As a result,
it is difficult to directly map the techniques from classical
planning systems to these application systems.

In this paper, we develop novel domain-independent heuris-
tic guidance techniques for the EUROPA2 planning system,
currently being used for several NASA mission applications
including MAPGEN, the ground-based daily activity plan-
ning system for the Mars Exploration Rover mission (MER).
This planner has been shown to be extremely successful
in solving complex real-world problems by providing the
user with a powerful modelling language as well as a highly
customizable solving engine. Nevertheless, EUROPA2 suf-
fers from having little or no effective domain-independent
heuristic guidance. Our technique borrows ideas from the
work of Haslum and Geffner (2000), and Helmert (2006). In
particular, we build transition graphs for the different state
variables in EUROPA2, and use these graphs to compute
distance estimates for choosing and resolving flaws within
EUROPA2’s plan refinement mechanism.

In order to explain our technique it is necessary to have
some understanding of the EUROPA2 planning paradigm
and search algorithm. We give a quick overview of the
essentials in the next two sections. We then describe our
technique for automatically deriving domain-independent
heuristic estimates. We conclude by presenting some pre-
liminary experimental results.

EUROPA2: Paradigm and modeling language
For EUROPA2, planning domains and problems are de-
scribed using a declarative modeling language called NDDL
(New Domain Definition Language). Aplanning domainD
in NDDL is represented by the following elements:
• A set of timelines: T = {T1, T2, . . . , Tn}, which are es-

sentially variables capturing the evolution of a quantity or
component over time

• A set of mutually exclusiveactivitiesassociated with each
timeline Ti: Act[Ti] = {a1(~x1, δ1), . . . , an(~xn, δn)}
where ~x is the vector of the activity’s parameters and
δ = [δmin, δmax] is a mathematical interval inN repre-
senting the duration of the activity

• A conjunction of temporal constraintsassociated with

each activityai: C[ai] = c1 ∧ . . . ∧ cn, where a conjunct
cj can assume one of the following two forms:

– cj = ai temporal relation ak

Such a conjunct is called acompatibility. It is a qualita-
tive (meets , met by , etc.) or quantitative temporal
constraint between the activityai and any other activ-
ity ak belonging to the same timelineT or to another
timelineTh. We talk aboutinternal andexternalcom-
patibilities and we indicate them asCI[ai] andCE[ai]).
The activityai is calledmasterand the activityak is
called aslave.

– cj = (case γ = 1 : C−1); . . . ; (case γ = m : C−m)
A conjunct can also correspond to a choice be-
tween different conjunctions of compatibilitiesC−h ,
where C−h = {c1 ∧ . . . ∧ cl} and ci =
ai temporal relation ak. The choice between
the conjunctions is regulated by the variableγ, which
is called theguard of the case.

A rich set of temporal relationships is permitted in compati-
bilities, including:equal, meets, contains, after, starts, over-
lapsand all their inverse relations. (These relations are simi-
lar to the thirteen temporal relations defined by Allen 1983.)

The above representation differs from a PDDL domain de-
scription in several respects: 1) it uses a variable/value rep-
resentation (timelines/activities) rather than a propositional
representation, and 2) there is no concept of state or action,
only of intervals (activities) and constraints between those
activities. In this respect, models in NDDL look more like
the schemas for SAT encodings of planning problems than
PDDL models.

A planning problemP is represented by a pairP = {H, I}
where:
• H ∈ N is the end of theplanning horizon, meaning that

we only care about the behaviour of the system with re-
spect to the temporal window[0,H].

• I is theinitial configuration represented by a set of activ-
ities placed on their corresponding timelines. If we anno-
tate an activitya by a time intervalτ(a) = [st(a), et(a)]
(indicating the temporal extent over whicha holds), then,
for each activityai in I, it is possible either to specify
the specific position ofai on the timeline, that basically
means fixing the start and end time ofτ(ai), or to leaveai

floating on the timeline between the origin and the hori-
zon of the time axis.

The initial configurationI corresponds to both the initial
state and the goal state as they are defined in classical plan-
ning. The activities inI that are placed at the beginning of
the horizon correspond to the traditional initial state, while
all the others generalize the classical notion of goal since
they can be placed not only at the end of the horizon, but
also in any other position.

For EUROPA2, the planning problem is to completely popu-
late all the timelines with activities so that there are no gaps,
and all compatibilities are respected.

An example. As an illustration of a simple NDDL do-
main model, consider a rover equipped with a set of in-

struments to sample a geological site. We model the
following subsystems as timelines:Battery , Navigator ,
Controller , Instrument1, . . . , Instrumentn. Each subsys-
tem can only perform certain activities. An instrument,
for example, can perform one of the following operations:
TakeSample(rock, 1), Place(rock, 3), Stow(2), Unstow(2) and
Stowed([1, +inf]). The first activity consists in taking a sam-
ple of a rock at the site and lasts 1 time unit. The other
specifications are similar. The constraints that regulate the
behaviour of an instrument are the following: in order to
take a sample of a rock, the instrument must be first un-
stowed and then properly positioned in the vicinity of the
rock. After taking the sample, the instrument can be placed
in another position for performing another experiment or can
be stowed. Those constraints are expressed by means of the
internal compatibilities. We show just a few of them:
• Unstow() meets Place(rock i)
• Place(rock i) meets TakeSample(rock i)
• case γ = 1 : TakeSample(rock i) meets Place(rockj);

case γ = 0 : TakeSample(rock i) meets Stow()
Note that in this model, we have made no attempt to model
or allow intermediate state betweenUnstow , Place, and
TakeSample operations – something that is not possible in
PDDL.

The external compatibilities forInstrumenti govern its inter-
actions with the activities on other timelines. For example,
the instrument can take a sample of a rock only if the naviga-
tor has already reached that rock and persists in that position
while the instrument is taking the sample:

Instrumenti.TakeSample(rock i) contained by
Navigator .At(rock i).
An initial configurationI for the rover domain can, for ex-
ample, specify the level of the battery, the position of the
navigator and the status of the instruments at the start of the
planning horizon and, furthermore, can establish that a sam-
ple of a particular rock should be taken within a certain time
interval.

EUROPA2: search algorithm

The planning algorithm at the core of EUROPA2 can be
thought of as an instance ofplan refinement search; given
a domainD and a problemP, the algorithm starts from the
initial configurationI and incrementally refines it by adding
activities to the timelines, ordering those activities and bind-
ing variables until a final consistent configuration is found.
This algorithm can also be seen as a search in thespace of
partial plans(McAllister & Rosenblitt 1991), where apar-
tial plan Π consists of the following elements:
• For each timelineT ∈ D, a set of activitiesActΠ =
{t1, t2, . . . , tn}, which are not necessarily contiguous on
time (actions in POCL)

• A temporal networkNΠ representing all the start and end
times of the activities in the plan and the constraints be-
tween them (ordering constraints in POCL).

• A set offlawsFΠ = {f1, f2, . . . , fm}, where a flaw is an
indication of a potential inconsistency in the partial plan.

There are three types of flaws:

– Open condition flaws: They arise when applica-
ble compatibilities are applied, triggering activities as
slaves of masters that are already in the planΠ. Those
slave activities are enforced to be part of the plan, but
they are not yet associated with any timeline. We call
themfree activities(open preconditions in POCL).

– Ordering flaws: They arise anytime an activity is
placed on a timeline and an ordering is required for the
activity with respect to the other activities already on
that timeline (threats in POCL).

– Unbound variable flaws: They arise when variables
that have not yet been instantiated appear in the plan
Π. Those variables are said to beunbound. There are
two kinds of unbound variables: parameters of activi-
ties which are already in the plan and guards of appli-
cable temporal constraints.

Refining a partial plan means to pick a flaw and resolve it.
The process terminates when the set of flaws is empty. Each
kind of flaw is solved in a different way.
• Resolvers for open condition flaws

Flaws corresponding to free activities can be resolved in
two ways:

– Merging A free activity is merged with a matching ac-
tivity already in the plan (similar to add-link in POCL
planning). The operation of merging does not result in
the addition of any new flaws to the current plan.

– ActivationWe introduce a new activitya in the current
plan associating it with the proper timeline, but without
choosing a specific time slot for it. The compatibilities
associated witha are applied and the slaves fired by
those compatibilities are introduced as free activities.
This results in both an ordering flaw, corresponding to
the just activated activity, and a number of open condi-
tion flaws, corresponding to the added slaves.

• Resolvers for ordering flaws
Once we have decided to place a new activity on a time-
line, we need to choose where to put it with respect to
the other activities already on that timeline. For this pur-
pose, the temporal constraints involving the new activity
are checked against the current temporal network. An or-
dering flaw is resolved by imposing ordering constraints
among activities in such a way that the temporal network
remains consistent and all the constraints are satisfied.

• Resolver for unbound variable flaws
Unbound variable flaws are resolved by specifying a value
in the domain of the variable. If the variable is a guard,
the binding causes the introduction in the current plan of
the slave activities associated with the chosen value.

The basic algorithm in EUROPA2 is adepth-first search
characterized byflaw selection, flaw resolution and con-
straint propagationsteps. Flaw selection identifies which
flaw to resolve next. This is not a backtracking point, but,
like variable ordering in constraint satisfaction, has a sig-
nificant impact on the amount of search and backtracking
required to find a solution. Flaw resolution deals with re-

solving a flaw by subsequently trying all the resolution op-
tions (activation and merging for open condition flaws, var-
ious activity orderings for ordering flaws and possible vari-
able bindings for unbound variable flaws). This is a back-
tracking point because if a resolution option does not work,
the algorithm tries another option until all options are ex-
hausted. Operations of plan refinement are interleaved with
constraint propagationon the temporal network underlying
the current partial plan.

The search control problem

Through a combination of careful domain engineering and
the crafting of domain-dependent search control informa-
tion, a user can customize and control search, flaw selection
and flaw resolution in EUROPA2. However, this process
is painful, time consuming, and often leads to models that
are not robust to further enhancements or changes. If EU-
ROPA2 is run in absence of domain-dependent heuristics, it
inevitably experiences serious control problems. Plans are
not found within a reasonable amount of time even for prob-
lems that are trivial for IPC planners.

Although plangraph distance estimates have been used ef-
fectively to guide POCL planners like RePop (Nguyen
& Kambhampati 2001) and VHPOP (Younes & Simmons
2003), to date, EUROPA2 has not benefited from any of
these techniques. There are several reasons for this includ-
ing: the variable/value representation, the lack of distinction
between state and action, the lack of distinction between fact
and goal, the lack of causality in the compatibilities, the
large number of exogenous events and time constraints in
many practical problems, and the bidirectional nature of the
search strategy (which appears essential for domains involv-
ing many time constraints and exogenous events). All these
factors make it difficult to directly map existing domain-
independent search strategies to EUROPA2. (Similar issues
exist for other temporal planners like ASPEN (Chienet al.
2000) and IxTeT (Ghallab & Laruelle 1994).)

In the next section, we develop a domain-independent con-
trol strategy for EUROPA2 that builds on the ideas of
distance-based estimations presented in (Haslum & Geffner
2000) and the construction of transition graphs described in
(Helmert 2006).

A search control strategy for EUROPA2

In order to effectively guide search in EUROPA2, we need a
method of assessing the impact of each possible flaw resolu-
tion on the cost of completing a partial plan. To do this, we
build a set of transition graphs, one for each timeline in the
domain, and use these graphs during planning to do distance
estimation.

Given a domainD and a timelineT ∈ D, the Activ-
ity Transition Graph for T is a directed weighted graph
GA[T] = {V,E,LE}, whereV is the set of vertexes,E the
set of edges andLE is a weight function which assigns a
numeric weight to each edge in the graph. The graph is de-
veloped as follows:
• We create a nodev ∈ V for each grounded activitya that

can appear onT .
• For each activitya that belongs toT , we examine the

internal and external compatibilities fora, respectively
CI[a] and CE[a], with the purpose of defining the tran-
sitions in the graph. In particular, the setCI[a] will spec-
ify the edges appearing in the transition diagram, while
the setCE[a] will dictate additionalconditionson those
edges.

• Consider the setCI[a] of internal compatibilities fora.
All of these compatibilities must be either generalized
meets or met by , because activities on the same time-
line cannot overlap. We define the transitions intoa and
out ofa as follows:

– The possible transitions out ofa are described by
meets compatibilities: for eachc ∈ CI[a] such that
c = a meets a′, we add a directed edgee ∈ E be-
tween the node corresponding toa and the node corre-
sponding toa′. The edgee is labelled with the lower
bound of the durationδ of the activitya.

– The possible transitions intoa are described by
met by compatibilities: for eachc ∈ CI[a] such that
c = a met by a′, we add a directed edgee ∈ E be-
tween the node corresponding toa′ and the node cor-
responding toa. The edgee is labelled with the lower
bound of the durationδ of the activitya′.

Note that there may be more than one edge into or out
of a because of the presence of unbound guards in the
specification of the temporal constraints involvinga.

• We now consider the external compatibilitiesCE[a] for a
and divide them into two further categories:

– meets , starts and contains compatibilities,
which specify that the activitya must start at a par-
ticular time at or before the start of another activity
a′. We will assume that these compatibilities are de-
scribing “side effects” of the activitya and we will ig-
nore the compatibilities in this category. (These side
effects might cause interference with the behavior of
other timelines, but we neglect this point here.)

– met by , ends and contained by compatibil-
ities, which specify that the activitya must start after
the start of another activitya′, or that only specify that
a must start after some particular time. We will assume
that these compatibilities describe “requirements” for
the activitya.1 For such compatibilities, we do not add
any edge in the graph, but we keep track of them by
associating a set ofconditionswith the appropriate in-
coming edge for the node representinga (we call the
setCond(a)).

For the rover example, Fig. 1 shows the activity transition
graph for theInstrumenti timeline, assuming there are only
two rocks in the domain.

1The causality for contains and contained-by compatibilities in
NDDL is not always clear. The contained interval could be a tem-
poraryeffectof the containing activity, or it could be acondition
that must hold in order for the containing activity to function as
desired. For present purposes we will assume that the contained
interval is an effect rather than a condition.

Place_rock1

Place_rock2

Stow

Unstow

Stowed

TakeSample
_rock1

TakeSample
_rock2

2

2

3

3

1

1

1

1

2

1

Figure 1: Activity Transition Graph forInstrumenti

Given an activity transition graphGA[T] for a timeline, we
defineT , CostSP(a1, a2) to be the cost of the shortest path
betweena1 anda2 in the graph. Using anall pairs shortest-
path algorithm we can precompute and store this informa-
tion for each timeline prior to beginning planning.

We now consider how to make use of this information to do
flaw resolution. Consider a partial planΠ with an open con-
dition or ordering flawf , and suppose thatf has a possible
resolutionr. We define the cost of the resolution,Cres(r),
as follows for merging and placement:
• Merging the activitya with some existing activitya′ on

the timelineT :
Cres(r) = 0

• Placing the activitya in an empty slots on the timeline
T . The activitya can be compatible with more than one
empty slot onT . Given one of those empty slotss, the
activity ai preceding the slots, and the activityai+1 fol-
lowing the slots (see Fig. 2):

Cres(r) =
CostSP(ai, a) + CostSP(a, ai+1)− CostSP(ai, ai+1)

The first definition corresponds to the intuition that the op-
eration of merging has no cost, since it does not modify the
partial plan. Moreover, it narrows the current set of flaws
while not adding any new flaws. The second definition es-
timates how well the activitya fits in the empty slots on
T . Without a, there is a costCostSP(ai, ai+1) of going
from the activityai precedings to the activityai+1 fol-
lowing s. By insertinga in the slots, we instead incur
the costCostSP(ai, a) of getting fromai to a, plus the cost
CostSP(a, ai+1) of getting froma to ai+1. The difference of
these costs is an indication of the penalty incurred by plac-
ing a in the slots. It represents the difference between the
shortest path to go fromai to ai+1 going througha and the
direct shortest path fromai to ai+1. Clearly, if a is part of
the direct shortest path, the measure is zero.

a
i

a
i+1

a

s

T

Figure 2: Placing the activitya on the timelineT

If R[f] = {r1, . . . , rk} is the set of possible resolutions for
a flawf , we define theCheapest Local Resolutionas:

CLR(f) = minri∈R[f]Cres(ri)

By using theCLR(f) for a placement flawf , we prefer to
place the activity in a slot where it causes the smallest in-
crease in the net cost for the timelineT . This provides an
initial good estimate of cost since it generally prefers merg-
ing (cost zero) to other possibilities, prefers slots with low
cost paths to higher cost paths, and avoids slots where no
transition is possible (infinite cost).

The above scheme is fairly simple because it does not con-
sider the interactions between an activitya and activities on
other timelines. In particular it neglects the requirements
that must be satisfied on other timelines when placinga in
a slots. It also does not consider theside-effectsthat might
result on other timelines by placinga in slot s. Omitting
the side-effects is similar to “ignoring delete lists” used in
many current planning systems, and we do not consider it
further here. However, if we want to compute a better esti-
mation of the cost of placing an activity on a timeline, we
should consider the costs of theconditionsthat must be sat-
isfied on the other timelines in order to make the placement
possible. The information regarding conditions is available
in the transition graph for the activity, since each edge is an-
notated with a set of conditions involving activities on other
timelines (and hence appearing in other transition graphs).
There are a number of possibilites for estimating the costs of
satisfying these conditions. All those options basically try to
estimate the cost of achieving a conditiona′ on a timelineT ′
by analyzing the transition graph forT ′ and calculating the
CLR(f ′), where the flawf ′ corresponds to the placement
of a′ on T ′. Two issues must be addressed when following
conditions back to their transition graphs:
• Duplication: Conditions may be repeated for several

edges along a shortest path, so we must avoid including
the cost of a single condition more than once.

• Recursion: We could continue chasing back the condi-
tions along the shortest path for each conditionci, trying
to get a better estimate of the cost of obtaining it. This
process might never end, because conditions for achiev-
ing ci might belong to the original timeline.

We have developed an algorithm for calculating costs of con-
ditions that gets around those problems by first recursively
collecting all the conditions into a set, and then adding up the
CLRs of the conditions. This approach avoids double count-
ing and recursion because each condition can appear at most
once in the set. Space limitations prevent us from presenting
the details of the algorithm so we give only a sketch here.
Given a flawf for placing an activitya on a timelineT , the
process aims at collecting the set of all the conditions on all
the timelines that should be satisfied in order to perform that
placement. The final cost of the placement is then taken as
the sum of the CLR of the flawf (as before) plus the costs
for this set of conditions. The set is developed by recursively
going backward to the graphs of the conditions fora, find-
ing the paths to achieve them, and unioning their conditions
to the set, while taking particular care that no duplicates are
added. Since there are a finite number of nodes and edges in
the transition graphs of the domain, this process will termi-
nate. By doing this, we are in essence collecting a the entire
set of steps (over all timelines) that are necessary in order to

placea onT . This set can be seen as a relaxed plan fora.

So far, we have presented the algorithm used by the flaw
resolution procedure when it has to estimate the cost of re-
solvers for open condition and ordering flaws. Due to space
limitations we do not give the details of the algorithm to treat
unbound variable flaws, which is based on the same con-
cepts and mechanisms that we have just described. Indeed,
choosing a resolver for an unbound variable flaw means
choosing a value for a guard variable, which in turn cor-
responds to enforcing one set of compatibilities instead of
another. In order to rank the different possible choices for
a guard variable, we need to evaluate how difficult it is to
achieve the compatibilities associated with that choice. Each
compatibility will raise an open condition flaw or an order-
ing flaw and we have shown how to estimate the cost of
resolving these kinds of flaws. Once we have the cost of
each flaw triggered by binding the unbound variable with a
certain value, we pick the value associated with the lowest
cost and assign it to the guarded variable. As far as theflaw
selectionprocedure is concerned, we can repeat the same
argument. We have also considered other more traditional
heuristics for flaw selection, such as choosing the variable
with “Minimum Domain Size”, but these heuristics resulted
in very poor performance.

Implementation and Experimental Results

We have some preliminary experimental results for the pro-
posed heuristics within EUROPA2. The current implemen-
tation is in C++ and the results were obtained using a Pen-
tium IV machine running at 1.8GHz with 1Gb of RAM.
Our current implementation includes pre-processing to con-
struct the activity transition graphs and shortest-path ta-
bles, and the simple versions of the flaw resolution and
flaw selection procedures. We have not yet fully imple-
mented the more complex heuristics that recursively chain
back through transition graphs to account for the conditions
on graph edges. The unavailability of a benchmark set of
domains written in NDDL makes performing experimenta-
tions within EUROPA2 very laborious, since domains and
problems have to be manually provided. In order to carry
out a more comprehensive evaluation of the performance
of EUROPA2, we are developing an automatic translator
from PDDL2.1 to NDDL, building on the translator from
PDDL2.1 to SAS+ tasks presented in (Edelkamp & Helmert
1999) and (Helmert 2004). The translator will provide us
with the opportunity to use the benchmark sets developed
for the International Planning Competition. Although these
results are preliminary, we present them as an indication of
the fact that it is possible to successfully export key tech-
niques developed by the classical planning community into
a very different framework such as EUROPA2. In particu-
lar, we aim at showing that, if we introduce automatically
derived heuristics into EUROPA2, it can work reasonably
well on domains that are not specifically tailored to fit its
features without the use of hand written control rules.

We discuss the tests of the proposed heuristic on two stan-
dard domains: TOWER-n and LOGISTICS. Both these do-
mains are particularly difficult for the standard version of

EUROPA2, because they involve many causal disjunctive
constraints and just a few simple temporal constraints. In
our translation, an activity can correspond to either an action
or a proposition. The constraints involving actions describe
the conditions and the effects of actions on the behaviour
of the other activities. The constraints involving atoms ba-
sically express the explanatory frame axioms: for each ac-
tivity, they explain under which circumstances that activity
can be started and terminated. Those constraints are particu-
larly critical for EUROPA2 for two reasons. First, they intro-
duce many disjunctions in the domain specification. Second,
since EUROPA2 works bi-directionally, it can happen that a
constraint explaining how an activity can be terminated is
prematurely applied. That results in an early action commit-
ment which is completely unmotivated with respect to the
achievement of the goal. The proposed heuristic overcomes
the two problems by postponing those kinds of constraints
and binding disjunctive guards in an effective way. As for
the TOWER-n domain, it deals with the construction of a
tower made of n blocksb1, . . . , bn. Eventually, the blockb1

should be on top andbn on the table. We consider two differ-
ent initial configurations: (1) all the blocks are on the table;
(2) all the blocks are on the table, but forbn which is on top
of b1. If the original planner is run on those problems with-
out the use of hand written control rules, it does not manage
to find a plan within a time bounds of hours, even for in-
stances with only three blocks. On the other hand, when we
introduce the heuristic estimators, EUROPA2 performs ex-
tremely well. If we consider the initial configuration (1), a
solution is found by pure inference and no search. In Figure
3, we show the performance of EUROPA2 on this problem
considering instances from two to fifty blocks. We compare
EUROPA2 with CPT (Vidal & Geffner 2006), an optimal
temporal planner based on constraint programming. CPT,
like EUROPA2, does not rely on search to solve this prob-
lem and outperforms other planners such as BLACKBOX
(Kautz & Selman 1999). Considering the initial configu-
ration (2), EUROPA2 finds a plan with only shallow back-
tracking and the performance is comparable with that shown
in table 3. Although this problem appears trivial for classical
planners, powerful systems such as FF (Hoffmann & Nebel
2001) cannot solve it.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
.)

Number of blocks

E2/CPT (Fast vers.) Tower domain

E2
CPT

Figure 3: Results for the Tower domain

LOGISTICS is the classical problem of moving packages
between different cities using trucks and planes. This prob-
lem differs from TOWER since it presents many indepen-
dent subgoals, while TOWER is characterized by many de-
pendent subgoals. The performance for LOGISTICS fol-
lows the same trend we showed for TOWER. The original
version of EUROPA2 fails to find a plan with time bounds
of hours for trivial instances, such as those involving three
packages and two cities, while it succeeds to solve big in-
stances without search when it uses the proposed heuristics.

Conclusions
We have developed novel domain-independent search con-
trol techniques for the EUROPA2 planning system. These
techniques construct transition graphs for each timeline in
the domain model and use these graphs to estimate the
cost of resolving flaws in different ways. This informa-
tion is used to guide both flaw selection, and flaw res-
olution. Although our experimental results are prelimi-
nary, they suggest that EUROPA2 can get by with far less
domain-dependent guidance, and can successfully function
as a general purpose engine if it makes use of these powerful
domain-independent heuristics.

References
Allen, J. 1983. Maintaining knowledge about temporal intervals.Communications of the ACM
26(11):832–843.

Blum, A., and Furst, M. 1997. Fast planning through planning graph analysis.Artificial Intelli-
gence90:281–300.

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.; Mutz, D.; Estlin, T.; B.Smith;
Fisher, F.; Barret, T.; Stebbins, G.; and Tran, D. 2000. ASPEN - Automated planning and schedul-
ing for space missions operations. InInternational Conference on Space Operations (SpaceOps
2000).

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge in planning problems to minimize
state encoding length. In5th European Conference on Planning (ECP’99), 135–147.

Frank, J., and Jonsson, A. 2003. Constraint based attribute and interval planning.Journal of
Constraints8(4):339–364. Special Issue on Planning.

Ghallab, M., and Laruelle, H. 1994. Representation and control in ixtet, a temporal planner. In
Proceedings of the Second International Conference on Artificial Intelligence Planning Systems
(AIPS-94), 61–67. AAAI Press.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for optimal planning. InProceedings of
the Fifth International Conference on Artificial Intelligence Planning and Scheduling, 140–149.

Helmert, M. 2004. A planning heuristic based on causal graph analysis. InProceedings of the
Fourteenth International Conference on Automated Planning and Scheduling, 161–170.

Helmert, M. 2006. The Fast Downward planning system.Journal of Artificial Intelligence Re-
search26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: fast plan generation through heuristic
search.Journal of AI Research14:253–302.

Kautz, H., and Selman, B. 1999. Unifying sat-based and graph-based planning. InProceedings of
the Sixteenth International Joint Conference on Artificial Intelligence.

McAllister, D., and Rosenblitt, D. 1991. Systematic nonlinear planning. InProceedings of the
Ninth National Conference on Artificial Intelligence(AAAI-91), volume 2, 634–639. AAAI Press.

Nguyen, X., and Kambhampati, S. 2001. Reviving partial order planning. InProc. of the 17th
Intl. Joint Conf. on Artificial Intelligence, 459–466.

Vidal, V., and Geffner, H. 2006. Branching and pruning: An optimal temporal pocl planner based
on constraint programming.Artificial Intelligence170(3):298–335.

Younes, H., and Simmons, R. 2003. Vhpop: Versatile heuristic partial order planner.Journal of
Artificial Intelligence Research20:405–430.

